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VIEWGRAPH 1.

We were faced with the dilemma of what would be the best average bottom loss to use
shallow water for propagation loss predictions over a relatively wide frequency range (100 to
5000 Hz). Considering that bottom loss can vary from location to location and also is frequency
dependent, we certainly appreciated the difficulties and limitations inherent in such a task.
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SHALLOW WATER PROPAGATION LOSS vs RANGE
Based on Marsh-Shulkin Eq (1962)
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VIEWGRAPH 2. M-S EXAMPLE

The impact of bottom loss on shallow water propagation under downward refracting
conditions is illustrated by this figure. The top curve is propagation loss due to cylindrical
spreading only and just below it, cylindrical spreading plus volume attenuation at 3000 Hz.

In comparison, the four lower curves (greater loss) are predictions of the Marsh-Schulkin
Colossus shallow water model (reference 1) which includes bottom loss (sand or mud) and
surface loss (sea state 1 or 4). The dominance of boundary losses - at 3000 hertz both bottom
and surface loss - is evident.

In this paper we will specifically address the sensitivity of shallow water propagation to
bottom loss values.
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VIEWGRAPH 3. ACOUSTIC BOTITOM LOSS EVALUATION (ABLE) 1

Thad Bell (formally of NUWC) reanalyzed the largest existing total energy bottom loss
data base and obtained bottom loss versus grazing angle curves for a wide range of frequencies

(50 to 3500 Hz) (reference 2). For selected frequencies, he developed polynomial fits to the
data. Shown here are his derived curves (lines) for 300, 1,000 and 3,500 for comparison with
smoothed measured bottom loss (points). A principal limitation, however, is that the data base,

which was obtained primarily from measurements in deep water, has very little data at grazing
angles less than 10 degrees, so that the slope at low angles is just an extension of the polynomial

fit determined at higher angles.
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VIEWGRAPH 5. ABLE COMPARED TO NONSPECIFIC CRITICAL ANGLE EXAMPLE

Unfortunately, measurement of low angle bottom less in both deep and shallow water is
quite difficult, and so the existing low angle data are very limited, as was previously mentioned.
Therefore, when you make an empirical fit through the entire data base, you are on thin ice below
10 degrees. In reality, the best you can do is continue the trend established at the higher angles,
and this results in a positive value at 0 degrees and does not take into account any critical angle
effect, illustrated by the dashed line which would be encountered with a "Fast" or "Hard"
bottom, that is, a bottom for which both the sound speed and density is greater than that at the
immediate overlying water.

At 0 degrees as shown by the dashed line, however, for a "Fast" bottom, that is, a
bottom where both the sound speed and density are greater (hence also called a "Hard" bottom)
than in the overlying water, the bottom loss is characterized by a critical angle (shown by the
solid line) where the loss rapidly increases. Also, in general, the loss is low at angles less than
the critical angle. This type of bottom loss reduction can be obtained from geophysical models.
One can see that there is a significant difference between the geophysical and extrapolated
predictions at low angles.
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VIEWGRAPH 6. MAP

We took 10 shallow water sites for analysis with various source and receiver depth
configurations. The results were reported at the last meeting of the society (reference 3). We
were somewhat apprehensive after finding that the majority of these sites had hard bottoms, so
we decided to do a propagation loss comparison with a geophysical (critical angle) bottom loss
model.
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VIEWGRAPH 7. PROPAGATION LOSS COMPARISON - GOOD AGREEMENT

We chose downward refracting (summer) conditions, because they obviously would be
the most sensitive to bottom loss. We found that for most sites and source/receiver
configurations, there was reasonable agreement between the predictions using the wideband
ABLE bottom loss curves and those using a geophysical bottom loss model, as typically shown
here.
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PROPAGATION LOSS
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VIEWGRAPH 8. GULF OF SIDRA PROPAGATION LOSS COMPARISON - BAD
AGREEMENT

However, there were several cases where our predictions were extremely pessimistic.
These involved strong dov, nward refracting conditions with source and receiver near the bottom.
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GRAZING (ARRIVAL) ANGLES OF DOMINANT EIGENRAYS

SUMMER PROFILES - DOWN REFRACTING
RECEIVER ON BOTTOM

RANGE = 20 NMI

LOCATION SOURCE = 25 FT SOURCE = "DEEP"

GULF OF SIDRA 10-110 1-20

KOREA STRAIT 110 4-100

STRAIT OF SICILY 9-110 0-40

JUAN DE,FUCA 90 0-30

MONTEVIDEO (FEBRUARY) 130 1 -20

NORWEGIAN SEA 11-120 9-120

EAST YELLOW SEA 110 0-10

KINGS BAY 150 7-08

NORTH SEA 11-120 0-10

SINAI 11-120 2-30

JU 5SM2 VG 3 UNCLASSIFIED

VIEWGRAPH 9. EIGENRAY ANGLES

An analysis of the dominant eigenrays for all of the propagation loss predictions gives
excellent insight into which propagation loss comparisons would be good and which would not.
When the dominant angles were approximately 10 degrees or above, which includes most of the
"25 ft source depth" and several "deep" cases (i.e., near the bottom, so the actaal depth varies
with location), agreement was expected and was good. The problem came with some of the low
angle cases which were associated with near-bottom (deep) source/receiver configurations.
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VIEWGRAPH 10. RAY PATH COMPARISON

We can illustrate why this would be a problem by using comparative ray diagrams for a
shallow water downward refracting case. For a shallow source, all paths result in relatively high
graz 1k,, angles. However, for a deep source, both high and low angle grazing angle paths are
possible. For a hard bottom with a well-defined critical angle, the low angle bottom loss will be
significantly lower than the high angle values. As a result, for a deep source, the low grazing
angle paths will dominate even though the distance traveled may be longer.
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VIEWGRAPH 11. ABLE-GEOPHYSICAL MODELS EIGENRAY COMPARISON

If we compare an ABLE-type bottom loss curve with a theoretical geophysical bottom
loss curve and mark the ranges of eigenray values shown in the previous figure, we can get a
good idea of where we would get significant discrepancies in bottom loss and, hence, significant
differences in propagation loss predictions. In particular, note the "deep source" cross-hatched
area; here we have very low angle eigenrays and, as a result, significant differences in bottom
loss between the ABLE and geophysical curves. On the other hand, there are not as significant
differences between the curves in the range of eigenrays resulting from a shallow source.
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VIEWGRAPH 12. URICK FIGURE

Urick has considered a similar problem in his "Propagation of Sound" book (reference
4). He suggests that bottom attenuation would change the bottom loss curve from a step-like
critical angle shape to a linear upward slope for the case of a "hard" or "fast" bottom.
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BOTTOM LOSS VS GRAZING ANGLE
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VIEWGRAPH 13. MODIFIED ABLE

Following this approach, we modified the ABLE fit by linearly extrapolating the value at
10 degrees down to zero. The results for various frequencies are shown here.
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VIEWGRAPH 14. NEW GULF OF SIDRA PROPAGATION LOSS COMPARISON - GOOD
AGREEMENT USING MODIFIED ABLE BOTTOM LOSS

If we now revisit our worst case, you can see that the propagation loss, using the
modified ABLE bottom loss, agrees well with the predictions using a geophysical bottom loss.
The results, using the unmodified ABLE curves, are shown by the dashed line.
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SENSITIVITY OF SHALLOW WATER
PROPAGATION LOSS

CONCLUSIONS

- IN A SHALLOW WATER, DOWNWARD REFRACTING, HARD BOTTOM ENVIRONMENT,
ACOUSTIC PROPAGATION BETWEEN A DEEP SOURCE AND A DEEP RECEIVER CAN
BE DOMINATED BY LOW ANGLE EIGENRAYS.

* THIS IS DUE TO THE RELATIVELY LOW BOTTOM LOSS AT ANGLES LESS THAN THE
CRITICAL ANGLE EVEN THOUGH THE ACOUSTIC PATHS MAY HAVE MORE BOTTOM
INTERACTIONS THAN THOSE FOR HIGHER ANGLE REFLECTIONS.

- UNDER THESE CONDITIONS, BOTTOM LOSS CURVES - BASED ON THE DEEP
WATER DATA BASE WITH VERY LIMITED LOW ANGLE DATA SUCH THAT THE SHAPE
OF THE CURVE IS BASED PRINCIPALLY ON THE TREND AT HIGHER ANGLES - WILL
OVERESTIMATE BOTTOM LOSS AND THE CORRESPONDING PROPAGATION LOSS.

- WE HAVE FOUND THAT A LINEAR EXTRAPOLATION OF SUCH CURVES FROM THEIR
NOMINAL VALUE AT 20 DEGREES (AND ABOVE) TO ZERO AT 0 DEGREES WILL
RESULT IN REALISTIC PREDICTIONS OF PROPAGATION LOSS FOR ALL
CONFIGURATIONS WE HAVE TRIED UNDER THESE CONDITIONS.
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VIEWGRAPH 15. CONCLUSIONS

In summary, we can say that even under strong downward refracting conditions in
shallow water, it is possible to have dominant low angle eigenrays, provided the source and
receiver are located near the bottom.

For a hard bottom, that is, a bottom for which the sound speed and density are
significantly greater than that of the overlying water, if these angles are less than the critical
angle, bottom loss will be relatively low, and an appropriate bottom loss model must be used foi
accurate predictions.
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